Finite-Difference Time-Domain (FDTD) methods represent a cornerstone in the numerical simulation of wave propagation phenomena. These methods solve Maxwell’s equations directly in the time domain, ...
Developed a CUDA version of the FDTD method and achieved a speedup 40x. Implemented on a NVIDIA Quadro FX 3800 GPU, which has 192 SPs, 1GB global memory, and a memory bandwidth of 51.2 GB/s.
In this RCE podcast, Brock Palen and Jeff Squyres discuss MEEP, a free finite-difference time-domain (FDTD) software for electromagnetic simulations. Their guests are Dr. Steven G. Johnson and Dr.
Copyright AD-TECH; licensee AZoM.com Pty Ltd. This is an AZo Open Access Rewards System (AZo-OARS) article distributed under the terms of the AZo–OARS https://www ...